
Getting Started Guide
AR10 Humanoid Robotic Hand

AR10 Hand
10 Degrees of Freedom Humanoid Hand

Introduction….………………..………………………………………….………….2

Getting Started…………………………………………………………………….…3

Pololu Maestro – Linux Install.……………………………………....………..4

Using Pololu Maestro (Linux & Windows)..……………………..….........5

Maestro Scripting……………………………………………………….……...……6

Using Python…………………….…………………….…………………………....10

Ros Setup…………….……………………………….…………………....……..…14

The Hardware.…..…..…………………………….….…………...…….…….….16

A
R
1
0
 R

o
b
o
t

H
a
n
d

1

C
o
n
te

n
ts

Contents

The AR10 Robot Hand features 10 degrees of freedom (DOF) that are servo actuated
and controlled using a programmable microcontroller. It is designed for use in a
teaching, research and lab environment. Manufactured from a hybrid construction, it
balances strength and weight. It is an ideal platform to carry out research in the field
of robotics. Its capability can be expanded by adding sensors or combining the hand
with a robot arm.

A
R
1
0
 R

o
b
o
t

H
a
n
d

AR10 Robotic Hand USB stick Getting Started

2

USB A - USB
mini-B lead

Introduction

C
o
n
te

n
ts

The latest up to date files can be downloaded from the AR10
Robotic Hand page, or found on the included USB stick:

http://www.active8robots.com/robots/ar10-robotic-hand/

A
R
1
0
 R

o
b
o
t

H
a
n
d

3

On the opposite side to the thumb you will see a
mini USB plug. Connect the provided USB lead to the
AR10 Robot Hand and your workstation.

On same side there will be the power inputs labelled
positive and negative (positive being on top (see
picture). Connect a 7.5V – 30V DC power supply to
the terminal and tighten the screws as shown.

Getting Started

C
o
n
n
e
ct

in
g
 t

h
e
 h

a
n
d

C
o
n
tr

o
lli

n
g
 t

h
e
 H

a
n
d

The hand can be controlled in a number of ways. See below for the relevant
pages:

Windows:

Pololu Maestro Control Center……………………………………………………………………….5

Maetro Scripting Language……………………………………………………………………………6

Linux:

Pololu Maestro Control Center……………………………………………………………………….4

Maetro Scripting Language……………………………………………………………………………6

Python………………………………………………………………………………………………..……..10

ROS……..14

4

Libusb will need to be installed. This can be done from a command window in
linux with the command:

sudo apt-get install libusb-1.0-0-dev mono-runtime

libmono-winforms2.0-cil

Unzip the maestro-linux-150116.tar by running “tar -xzvf” followed by the name
of the file.
After following the instructions in README.txt, you can run the programs by
executing MaestroControlCenter and UscCmd.

Open the following folder:
cd /etc/udev/rules.d/

gksu gedit

You may then be asked to install an application.
Here copy the contents of 99-pololu.rules to the newly opened document and
save it in the current folder with the name 99-pololu.rules
Then run the following code with the AR10 Hand unplugged from the
workstation:

sudo udevadm control -–reload-rules

The following code will run the programs:
./MaestroControlCenter

./UscCmd

If an error message saying “cannot execute binary file” appears, use the mono
command to run the program

mono ./UscCmd

The Getting Started section then explains how to load the calibration file and
control the servos.

A
R
1
0
 R

o
b
o
t

H
a
n
d

Pololu - Linux

P
re

re
q
u
is

it
e
s

In
st

a
lli

n
g

U
S
B
 C

o
n
fi
g
u
ra

ti
o
n

R
u
n
n
in

g
 t

h
e
 P

ro
g
ra

m
Installing Pololu Maestro Control Center on Linux

5

Load the AR10v4_settings settings file. This should be pre-loaded, but it is good
practice to load it up the first time you use the hand. Go to File > Open Settings
File
This loads the specific servo limits for each joint. Click Apply Settings on the bottom
right. This will write the settings to the Maestro servo board. These should not be
changed as it will result in joints colliding and may cause damage to the hand.

Enable the servos in the Status tab by ticking the checkboxes. The servos can now
be controlled and monitored from this tab using the sliders.

A demo sequence is loaded into the Sequence 8vi test file. Load this in the same
way and open the Sequence tab. You should see a sequence displayed. By clicking
the Play Sequence button, the hand will run through its whole range of motions.

A
R
1
0
 R

o
b
o
t

H
a
n
d

Pololu Maestro

S
e
tt

in
g
s

F
ile

E
n
a
b
lin

g
 S

e
rv

o
s

D
e
m

o
 P

ro
g
ra

m
Note: for Windows install the maestro-windows file then follow the
instructions below

A
R
1
0
 R

o
b
o
t

H
a
n
d

6

1

2

3

4

5

6

7

8

9

10

5 # start with a 5 on the stack

begin

dup # copy the number on the stack - the copy will be consumed by WHILE

while # jump to the end if the count reaches 0

4500 1 servo

500 delay

2000 1 servo

1500 delay

1 minus # subtract 1 from the number of times remaining

repeat

Simple sequences can be created with the Sequence tab. Each frame denotes a
separate position. These sequences can be copied to the Pololu Maestro board in
the following way:

Copy Sequence to Script stores the script on the Pololu Maestro to a looped version
of the sequence.

The Script tab enables you to write more complex programs for the AR10 Robotic
Hand.

The green run script button will process the script one instruction at a time until a
quit instruction or error is reached. A small pink triangle will jump along the code
showing which line is being executed.

The blue Step Script button is a useful tool for running through the code step by
step.

Run script on startup option in the Script tab enables the script to be run when the
hand is powered up. This negates the need for a connection to a PC.

The Maestro Scripting Language Basics

begin…repeat is a useful infinite loop to use
while loop consumes the top number of the stack and end the loop if the

number is a zero. These loops however come after the argument. E.g.

T
h
e
 S

e
q
u
e
n
ce

r
S
cr

ip
ts

C
o
n
tr

o
l
S
tr

u
ct

u
re

s

Maestro Scripting

7

These are useful to call if you need to often return to a specific position such as
returning the hand to its open position.

By using the command open the hand will then return to its open positions. (nb: only
2 servos are being used).

The potentiometer feedback can be used as an input to a program. External inputs
connected to the remaining four pins of the Pololu Maestro can be used. For
example: potentiometers, force sensors or EMG muscle activity sensors.

Depending on the value of an input an analogue position for one or several servos
can be set correspondingly. This can be scaled to match the range of the servo. For
example:

A discrete position can also be set depending on the input value:

1

2

3

4

sub open

4500 1 servo

4500 2 servo

return

A
R
1
0
 R

o
b
o
t

H
a
n
d

1

2

3

4

5

6

Sets servo 0 to a position based on an analogue input.

begin

1 get_position # get the value of the input, 0-1023

2 times 2000 plus # scale it to 2000-4046, approximately 1-2 ms

5 servo # set servo 5 based to the value

repeat

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
16

17

 # Set the servo to 2000, 3000, or 4000 depending on an analog input.
 begin

 1 get_position # get the value of the input, 0-1023

 dup 200 less_than
 if
 2000 # go to 2000 for values 0-199
 else
 dup 500 less_than
 if
 6000 # servo to position 3000 for values 200-499
 else
 8000 # servo to position 4000 for values 500-1023
 endif
 endif
 5 servo

 drop # remove the original copy of the input value
 repeat

S
u
b
ro

u
ti
n
e
s

U
si

n
g
 I

n
p
u
ts

Maestro Scripting

A
R
1
0
 R

o
b
o
t

H
a
n
d

8

Note. When the input value is close to the limit denoted in the program. E.g. 200 or
800, noise in the digital to analogue conversion may lead to the servo jumping back and
forth at random. The use of hysteresis is a way to overcome this:

Here a range of +/- 10 is used for making a transition. The value has to reach 10 above
or below the threshold before the servo will make the transition. This value can be
changed to overcome noise.

More information on scripting can be found in the Pololu Maestro User Manual.

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15
16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

Set the servo to 2000, 3000, or 4000 depending on input, with hysteresis.
begin
 2000 0 200 servo_range
 3000 200 500 servo_range
 4000 500 1023 servo_range
repeat

usage: <pos> <low> <high> servo_range
If the input is in the range specified by low and high,
keeps servo 5 at pos until the input (inp) moves out of this
range, with hysteresis.
sub servo_range

 inp 2 pick less_than logical_not # >= low
 inp 2 pick greater_than logical_not # <= high
 logical_and
 if
 begin

 inp 2 pick 10 minus less_than logical_not # >= low - 10
 inp 2 pick 10 plus greater_than logical_not # <= high + 10
 logical_and
 while
 2 pick 5 servo
 repeat
 endif
 drop drop drop
 return

sub pot
 1 get_position
 return

Maestro Scripting

9

These are useful functions to call when using the Pololu Maestro scripting language.

keyword stack effect description

BEGIN none marks the beginning of a loop

ENDIF none
ends a conditional block
IF…ENDIF

ELSE none
begins the alternative block in
IF…ELSE…ENDIF

GOTO label none
goes to the label label (define it
with label:)

IF -1
enters the conditional block if
the argument is true (non-zero)
in IF…ENDIF or IF…ELSE…ENDIF

REPEAT none marks the end of a loop

SUB name none defines a subroutine name

WHILE -1
jumps to the end of a loop if
the argument is false (zero)

QUIT none stops the script

RETURN none ends a subroutine

DELAY -1
delays by the given number of
milliseconds

SPEED -2

Sets the speed of the channel
specified by the top element
to the value in the second
element

ACCELERATION -2

Sets the acceleration of the
channel specified by the top
element to the value in the
second element

GET_POSITION -1,+1
Get the position of the channel
specified by the top element

SERVO -2

Sets the target of the channel
specified by the top element f
the value in the second
element, in the units of 0.25μs

A
R
1
0
 R

o
b
o
t

H
a
n
d

Maestro Language

A
R
1
0
 R

o
b
o
t

H
a
n
d

10

A Python class has been developed, enabling the AR10 Robotic Hand to be
programmed in Python.

The AR10 Python Class can be used to communicate with the Pololu Maestro board
and control the servos.
It includes several defined functions, as listed in the tables on pages 13 and 14.

Ensuring USB Dual Port. This should be set by default, however if not it can be
found in the Serial Settings tab of the Pololu Maestro control Center

The following will ensure you have permissions to control the USB port
Sudo adduser MY_USER_NAME dialout

You also need to ensure the ttyACM0 is read/writeable by using the following code:
Cd /dev

Sudo chmod 666 ttyACM0

This will need to be run again every time the hand is connected to the workstation.

Installing the ‘libusb’ Pyhton module will enable communication to the USB when
running the Python code.

This can be done with the following code
sudo apt-get install libusb-1.0-0-dev mono-runtime

libmono-winforms2.0-cil

These are set in the settings file written to the Pololu Maestro board. These should
not be changed as it will result in joints colliding and may cause damage to the
hand.

U
S
B
 D

u
a
l
P
o
rt

P
e
rm

is
si

o
n
s

L
ib

u
sb

L
im

b
 L

im
it
s

Using Python

11

There are two calibration files included:

AR10_calibrate.py
AR10_check_calibration.py

Running the AR10_calibrate.py files will run the hand through its range of motions
and check the position it is receiving on the feedback channel and calibrate the hand
accordingly.

Joint = 0 y intercept = 8155.78362826 slope = -6.34587274929

Joint = 1 y intercept = 8295.09535433 slope = -6.92578464618

Joint = 2 y intercept = 8256.94844543 slope = -6.64925888806

The above will be displayed on the console and run through all the joints. These will
then be written into calibration_file. This should be kept in the same directory as the
Python calibration scripts.

Running the AR10_check_calibration.py will run the hand through its range of
motions and display the target position set for each joint, and the position read and
the error. It is normal to have small errors.

It should look like this:

Joint = 0 set position = 4544 position = 4442 error = 102

Joint = 0 set position = 5000 position = 4911 error = 89

Joint = 0 set position = 5500 position = 5419 error = 81

The code will continue to then run through all the joints.

The AR10_class needs to be imported. Functions such as those listed on page 13 and

14 can then be used, such as:

1 import AR10_class

3

4 hand = AR10_class.AR10()

5

6 hand.move(0, 5500)

A
R
1
0
 R

o
b
o
t

H
a
n
d

C
a
lib

ra
ti
o
n
 F

ile
s

W
ri
ti
n
g
 y

o
u
r

o
w

n
 c

o
d
e

Using Python

A
R
1
0
 R

o
b
o
t

H
a
n
d

12

keyword description

get_read_position(self, channel)
Have servo outputs reached their targets? This
is useful only if Speed and/or Acceleration have
been set on one or more of the channels.

get_position(self, channel) As above but returns True or False.

get_moving_state(self) As above but for the moving state of the joints.

run_script(self, subNumber)

Run a Maestro Script subroutine in the currently
active script. Scripts can have multiple
subroutines, which get numbered sequentially
from 0 on up. Code your Maestro subroutine to
either infinitely loop, or just end (return is not
valid).

stop_script(self) Stops the current Maestro script.

move(self, joint, target) Moves the defined joint to the target position.

wait_for_hand(self) Waits for joints to stop moving.

This is a list of functions that can be called when the AR10_class is referenced.

A demo program called AR10_hand.py has been included. It is
a useful reference for using different functions. Make sure the
AR10_class.py is in the same root folder.

It includes the use of joint moves, finger moves, setting speed
and acceleration as well as pre programmed grips for holding a
tennis ball or a golf ball.D

e
m

o
 P

ro
g
ra

m
P
y
th

o
n
 C

o
m

m
a
n
d
s

Demo Program

13

Keyword Description

open_hand(self) Opens the hand.

close_hand(self) Closes the hand.

close(self) Closes the USB serial port.

change_speed(self, speed) Changes the speed setting of the servos.

set_speed(self, channel)
Set the speed of an individual channel. A speed of
1 will take 1 minute, a speed of 60 would take 1
second and a speed of 0 is unlimited.

change_acceleration(self,
acceleration)

Changes the acceleration of the servos. This
provides soft starts and finishes when servo
motors are set to target positions.

set_acceleration(self, channel,
acceleration)

Sets the acceleration of individual channels. Valid
values are from 0 to 255. 0=unlimited, 1 is
slowest start. A value of 1 will take the servo
about 3s to move between 1ms to 2ms range.

set_target(self, channel, target)
Sets a particular channel to a specific target
value. The range of values is from 4200 to 7950.

joint_to_channel(self, joint) Converts a joint number to a channel number.

get_set_position(self, joint)

Get the current position of the device on the
specified channel . The result is returned in a
measure of quarter-microseconds, which mirrors
the Target parameter of set target. This is not
reading the true servo position, but the last
target position sent to the servo. If the Speed is
set to below the top speed of the servo, then the
position result will align well with the actual
servo position, assuming it is not stalled or
slowed.

A
R
1
0
 R

o
b
o
t

H
a
n
d

Python Commands

Ubuntu 14.04
ROS Indigo – For installation instructions please visit
wiki.ros.org/indigo/Installation/Ubuntu

Other versions of Ubuntu and ROS may be compatible however at this given time,
certain features may not function as expected.

An Understanding of Linux based systems
An Understanding of ROS, Recommended Tutorials : wiki.ros.org/ROS/Tutorials
USB permissions to communicate with the hand, can be found in the Maestro
control center setup guide on page 6

Download the latest version of the AR10 ROS Package from:
www.active-robots.com/ar10-humanoid-robotic-hand

Unzip the file and place the folders ar10, ar10_description and ar10_moveit to the
src folder in the ROS workspace.

The .py files in the scripts folder need to be made into executables so they can be
run. This is done using the following command from the ROS workspace:

chmod +x src/ar10/scripts/*.py

The ROS package should now be ready to use.

Whenever a new terminal is opened in linux the setup.bash file must be sourced
in order to gain access to the ROS commands. This can be done from the ROS
workspace using the command :

source devel/setup.bash

More infomation on ROS commands can be found at wiki.ros.org

A
R
1
0
 R

o
b
o
t

H
a
n
d

R
e
q
u
ir
e
m

e
n
ts

P
re

re
q
u
is

it
e
s

In
st

a
lla

ti
o
n

U
si

n
g
 R

O
S

14

ROS Setup

15

ROS requires a roscore to be run in order for nodes to communicate with each
other. This can be run from your ROS workspace once the setup.bash file has
been sourced using the following command:

roscore

With the roscore running, it is possible to run other executables in separate
terminals. Further information on the scripts and how to run them can be found
by opening the files in a text editor such as Gedit.

The scripts ar10_rviz_control_node.py uses commands from Rviz to send to the
AR10 hand. It can be opened from the ROS workspace using the following
command:

rosrun ar10 ar10_rviz_control_node.py

The Rviz interface can now be opened in a separate terminal from the ROS
workspace:

roslaunch src/ar10_description/launch/display.launch

model:=src/ar10_description/urdf/ar10.urdf

The URDF model should now be open in the workstation. The joints of the model
can be controlled using the joint_state_publisher GUI. Providing that
ar10_rviz_controll_node.py is still open, the AR10 hand should also be controllable
using the joint_state_publisher GUI.

A
R
1
0
 R

o
b
o
t

H
a
n
d

E
x
a
m

p
le

ROS Example

A
R
1
0
 R

o
b
o
t

H
a
n
d

16

Each degree of freedom is actuated by a
6V linear actuator which incorporates a
linear potentiometer and controller. This
allows it to operate as a linear servo. The
servos are specifically modified Firgelli PQ
series linear actuators, each configured
with a 100:1 gearbox.

They are not back-drivable. Care should be taken to adhere to the spec
requirements of the motors when using the hand, specifically the 20% duty cycle
of the actuators.
The actuator datasheet can be found on the Active Robots AR10 Humanoid
Robotic Hand webpage.

The servos are connected to the Maestro board with a 4-wire ribbon cable . They
operate as 3-wire servos, with the fourth wire providing feedback (see table).

They are not back-drivable. Care should be taken to adhere to the spec
requirements of the motors when using the hand, specifically the 20% duty cycle
of the actuators.
The actuator datasheet can be found on the Active Robots AR10 Humanoid
Robotic Hand webpage.

Should you wish to power the Maestro servo controller from the DC-DC step
down regulator instead of USB then place a jumper lead across the pair of pins
marked “VSRV=VIN” on the Maestro PCB (marked by an orange box on the
Maestro pin-out diagram).

The regulator powers the linear actuators and their
microcontrollers. The DC-DC regulator will accept
voltages from 7.5V to 30V DC, with a power supply
of at least 1.5A. It is pre-set to output 6V DC to the
servos with up to 3 amps, and does not need
adjusting.

D
C
-D

C
 S

te
p
 D

o
w

n

R
e
g
u
la

to
r

P
o
w

e
ri
n
g
 t

h
e
 P

o
lo

lu
C
h
ip

se
t

w
it
h
o
u
t

U
S
B

S
e
rv

o
s

The Hardware

A
R
1
0
 R

o
b
o
t

H
a
n
d

The servos are connected to the Maestro board with a 4-wire ribbon cable . They
operate as 3-wire servos, with the fourth wire providing feedback (see table).

Servo Wire Designation

Black 0 Volts DC

Red +6 Volts DC

White Servo Control

Purple Potentiometer Feedback

Each finger has two motors. The lower motor is marked on the wiring harness
using a cable marker according to the diagram opposite.
The Maestro is configured with a settings file that designates the required channels
as analogue inputs or servo outputs as shown in the diagram overleaf.

S
e
rv

o
s

The Hardware

17

18

18

8

19

9

16

6

17

7

14

4

15

5

12

2

13

3

Control Channel Servo Control & Feedback Channel

Red Purple

18

8

19

9

16

6

17

7

14

4

15

5

12

2

13

3

Left Hand Right Hand

A
R
1
0
 R

o
b
o
t

H
a
n
d

The Hardware

A
R
1
0
 R

o
b
o
t

H
a
n
d

19

The hand uses a Pololu Maestro Mini 24 channel servo
controller to drive the actuators and receive feedback.
There are 4 extra channels on the Pololu Maestro not
being used to control the hand. Extra sensors or
actuators can be added to these, such as force sensors,
or EMG sensors to measure muscle activity and control
the hand. See the assembly manual for a detailed view of
the daughter board that is attached to the Pololu board.

unused inputs

T
h
e
 C

o
n
tr

o
lle

r
P
o
lo

lu
M

a
e
st

ro
 M

in
i
2
4
 P

in
-O

u
t

The Hardware

Document Version 2.4 November 2016
Active Robots Ltd

Registered: England & Wales
Company number: 4693628
VAT Reg: GB 810 7979 13

Made in the UK

Active Robots Ltd
Unit 10A, New Rock Industrial Estate

Chilcompton
Radstock
BA3 4JE

United Kingdom
Active Robots Technical Support:

Email: support@active-robots.com
Phone: 01761 234376

www.active8robots.com

