
1

MicroBasic
Scripting
Language

User & Reference Manual

V2.0, July 8, 2019

visit www.roboteq.com to download the latest revision of this manual

©Copyright 2016-2019 Roboteq, Inc

MicroBasic Scripting Lanuguage

2 MicroBasic Scripting Language Manual V2.0, July 8, 2019

Revision History

Date Version Changes

July 8, 2019 2.0 Extracted from main User Manual

The information contained in this manual is believed to be accurate and reliable. How-
ever, it may contain errors that were not noticed at the time of publication. Users are
expected to perform their own product validation and not rely solely on data contained
in this manual.

MicroBasic Scripting Language Manual 3

Revision History ... 2

Introduction .. 5
Refer to the Datasheet for Hardware-Specific Issues 5
User Manual Structure and Use ... 5
MicroBasic Scripting .. 5

MicroBasic Scripting .. 7
Script Structure and Possibilities .. 7
Source Program and Bytecodes .. 8
Variables Types and Storage ... 8
Variable content after Reset ... 8
Controller Hardware Read and Write Functions ... 8
Timers and Wait ... 9
Execution Time Slot and Execution Speed ... 9
Protections ... 9
Print Command Restrictions .. 9
Editing, Building, Simulating and Executing Scripts 10
Editing Scripts .. 10
Building Scripts .. 10
Simulating Scripts .. 10
Downloading MicroBasic Scripts to the controller11
Saving and Loading Scripts in Hex Format ..11
Executing MicroBasic Scripts ...11
Debugging Microbasic Scripts ... 12
Script Command Priorities ... 12
MicroBasic Scripting Techniques .. 13
Single Execution Scripts .. 13
Continuous Scripts ... 13
Optimizing Scripts for Integer Math ... 14
Script Examples ... 15
MicroBasic Language Reference ... 15
Introduction .. 15
Comments ... 16
Boolean .. 16
Numbers .. 16
Strings .. 16
Blocks and Labels .. 17
Variables ... 18
Arrays ... 18
Terminology ... 18
Keywords ... 19
Operators ... 19
Micro Basic Functions .. 19
Controller Configuration and Commands ... 20
Timers Commands .. 20
Pre-Processor Directives (#define) ... 20
Option (Compilation Options) .. 20
Dim (Variable Declaration) .. 20
If...Then Statement .. 21

4 MicroBasic Scripting Language Manual V2.0, July 8, 2019

For...Next Statement .. 22
While/Do Statements .. 23
Terminate Statement ... 24
Exit Statement ... 24
Continue Statement ... 24
GoTo Statement ... 25
GoSub/Return Statements ... 25
ToBool Statement .. 26
Print Statement .. 26
+ Operator ... 26
- Operator ... 26
* Operator .. 26
/ Operator ... 26
Mod Operator .. 27
And Operator ... 27
Or Operator .. 27
XOr Operator .. 27
Not Operator .. 27
True Literal ... 27
False Literal .. 27
++ Operator ... 27
-- Operator .. 28
<< Operator ... 28
>> Operator ... 29
<> Operator ... 29
< Operator ... 29
> Operator ... 29
<= Operator ... 29
> Operator ... 29
>= Operator ... 29
+= Operator ... 29
-= Operator .. 30
*= Operator ... 30
/= Operator .. 30
<<= Operator... 30
>>= Operator... 31
[] Operator ... 31
Abs Function .. 31
Atan Function ... 31
Cos Function .. 31
GetValue .. 32
SetCommand ... 32
SetConfig / GetConfig .. 33
SetTimerCount/GetTimerCount ... 33
SetTimerState/GetTimerState ... 33
Sending RoboCAN Commands and Configuration 34
Reading RoboCAN Operating Values Configurations 34
RoboCAN Continuous Scan ... 35
Checking the Presence of a RoboCAN Node ... 35

MicroBasic Scripting

MicroBasic Scripting Language Manual 5

 Introduction

Refer to the Datasheet for Hardware-Specific Issues
This manual is the companion to your controller’s datasheet. All information that is specific
to a particular controller model is found in the datasheet. These include:

• Number and types of I/O
• Connectors pin-out
• Wiring diagrams
• Maximum voltage and operating voltage
• Thermal and environmental specifications
• Mechanical drawings and characteristics
• Available storage for scripting
• Battery or/and Motor Amps sensing
• Storage size of user variables to Flash or Battery-backed RAM

User Manual Structure and Use
The user manual discusses issues that are common to all controllers inside a given prod-
uct family. Except for a few exceptions, the information contained in the manual does not
repeat the data that is provided in the datasheets.

MicroBasic Scripting
This section describes the MicroBasic scripting language that is built into the controller. It
describes the features and capabilities of the language and how to write custom scripts. A
Language Reference is provided.

Introduction

6 MicroBasic Scripting Language Manual V2.0, July 8, 2019

Script Structure and Possibilities

MicroBasic Scripting Language Manual 7

MicroBasic Scripting

One of the Roboteq products’ most powerful and innovative features is their ability for the
user to write programs that are permanently saved into, and run from the device’s Flash
Memory. This capability is the equivalent, for example, of combining the motor controller
functionality and this of a PLC or Single Board Computer directly into the controller. Script
can be simple or elaborate, and can be used for various purposes:

• Complex sequences:
MicroBasic Scripts can be written to chain motion sequences based on the status
of analog/digital inputs, motor position, or other measured parameters. For exam-
ple, motors can be made to move to different count values based on the status of
pushbuttons and the reaching of switches on the path.

• Adapt parameters at runtime
MicroBasic Scripts can read and write most of the controller’s configuration set-
tings at runtime. For example, the Amps limit can be made to change during opera-
tion based on the measured heatsink temperature.

• Create new functions
Scripting can be used for adding functions or operating modes that may be needed
for a given application. For example, a script can compute the motor power by mul-
tiplying the measured Amps by the measured battery Voltage, and regularly send
the result via the serial port for Telemetry purposes.

• Autonomous operation
MicroBasic Scripts can be written to perform fully autonomous operations. For ex-
ample the complete functionality of a line following robot can easily be written and
fitted into the controller.

Script Structure and Possibilities
Scripts are written in a Basic-Like computer language. Because of its literal syntax that is
very close to the every-day written English, this language is very easy to learn and simple
scripts can be written in minutes. The MicroBasic scripting language also includes support
for structured programming, allowing fairly sophisticated programs to be written. Several
shortcuts borrowed from the C-language (++, +=, …) are also included in the scripting lan-
guage and may be optionally used to write shorter programs.

The complete details on the language can be found in the MicroBasic Language
Reference on page 15.

MicroBasic Scripting

8 MicroBasic Scripting Language Manual V2.0, July 8, 2019

Source Program and Bytecodes
Programs written in this Basic-like language are interpreted into an intermediate string of
Bytecode instructions that are then downloaded and executed in the controller. This two-
step structure ensures that only useful information is stored in the controller and results in
significantly higher performance execution over systems that interpret Basic code directly.
This structure is for the most part entirely invisible to the programmer as the source edit-
ing is the only thing that is visible on the PC, and the translation is done in the background
just prior to downloading to the controller.

Depending on the product, programs can be from 8192 to 32768 Bytecodes long. This
translates to approximately 1500 to 6000 lines of MicroBasic source.

Variables Types and Storage
Scripts can store signed 32-bit integer variables and Boolean variable. Integer variables can
handle values up to +/– 2,147,483,647. Boolean variables only contain a True or False state.
The language also supports single dimensional arrays of integers and Boolean variables.

In total, up to 1024 or 4096 (depending on the product) Integer variables and up to 1024
Boolean variables can be stored in the controller. An array of n variables will take the stor-
age space of n variables.

The language only works with Integer or Boolean values. It is not possible to store or
manipulate decimal values. This constraint results in more efficient memory usage and
faster script execution. This constraint is usually not a limitation as it is generally sufficient
to work with smaller units (e.g. millivolts instead of Volts, or milliamps instead of Amps) to
achieve the same precision as when working with decimals.

The language does not support String variables and does not have string manipulation
functions. Basic string support is provided for the Print command.

Variable content after Reset
All integer variables are reset to 0 and all Boolean variables are reset to False after the
controller is powered up or reset. When using a variable for the first time in a script, its
value can be considered as 0 without the need to initialize it. Integer and Boolean vari-
ables are also reset whenever a new script is loaded.

When pausing and resuming a script, all variables keep the values they had at the time the
script was paused.

Controller Hardware Read and Write Functions
The MicroBasic scripting language includes special functions for reading and writing
configuration parameters. Most configuration parameters that can be read and changed
using the Configuration Tab in the Roborun PC utility or using the Configuration serial
commands, can be read and changed from within a script. The GetConfig and SetConfig
functions are used for this purpose.

The GetValue function is available for reading real-time operating parameters such as Ana-
log/Digital input status, Amps, Speed or Temperature.

The SetCommand function is used to send motor commands or to activate the Digital
Outputs. Practically all controller parameters can be access using these 4 commands,

Script Structure and Possibilities

MicroBasic Scripting Language Manual 9

typically by adding the command name as defined in Section “Serial (RS232/RS485/TCP/
USB) Operation” found in Roboteq Controllers User Manual v2.0 preceded with the “_”
character. For example, reading the Amps limit configuration for channel 1 is done using
getvalue(_ALIM, 1).

See the MicroBasic Language Reference on page 15 for details on these functions and
how to use them.

Timers and Wait
The language supports four 32-bit Timer registers. Timers are counters that can be loaded
with a value using a script command. The timers are then counting down every millisec-
ond independently of the script execution status. Functions are included in the language
to load a timer, read its current count value, pause/resume count, and check if it has
reached 0. Timers are very useful for implementing time-based motion sequences.

A wait function is implemented for suspending script execution for a set amount of time.
When such an instruction is encountered, script execution immediately stops and no
more time is allocated to script execution until the specified amounts of milliseconds have
elapsed. Script execution resumes at the instruction that follows the wait.

Execution Time Slot and Execution Speed
MicroBasic scripts are executed in the free time that is available every 1ms, after the con-
troller has completed all its motion control processing. The available time can therefore
vary depending on the functions that are enabled or disabled in the controller configura-
tion. For example more time is available for scripting if the controller is handling a single
motor in open loop than if two motors are operated in closed loop with encoders. At the
end of the allocated time, the script execution is suspended, motor control functions are
performed, and scripts resumed. An execution speed averaging 50,000 lines of MicroBa-
sic code, or higher, per second can be expected in most cases.

Protections
No protection against user error is performed at execution time. For example, writing or
reading in an array variable with an index value that is beyond the 1024 or 4096 variables
available in the controller may cause malfunction or system crash. Nesting more than 64
levels of subroutines (i.e. subroutines called from subroutines, …) will also cause potential
problems. It is up to the programmer to carefully check the script’s behavior in all conditions.

Print Command Restrictions
A print function is available in the language for outputting script results onto the serial or
USB port. Since script execution is very fast, it is easy to send more data to the serial
or USB port than can actually be output physically by these ports. The print command is
therefore limited to 32 characters per 1ms time slot. Printing longer strings will force a
1ms pause to be inserted in the program execution every 32 characters and/or loss of
characters.

MicroBasic Scripting

10 MicroBasic Scripting Language Manual V2.0, July 8, 2019

Editing, Building, Simulating and Executing Scripts

Editing Scripts
An editor is available for scripting in the RoborunPlus PC utility. See Scripting Tab on page
368 (Roborun scripting) for details on how to launch and operate the editor.

The edit window resembles this of a typical IDE editor with, most noticeably, changes in
the fonts and colors depending on the type of entry that is recognized as it is entered. This
capability makes code easier to read and provides a first level of error checking.

Code is entered as free-form text with no restriction in term of length, indents use, or
other.

Building Scripts
Building is the process of converting the Basic source code in the intermediate Bytecode
language that is understood by the controller. This step is nearly instantaneous and nor-
mally transparent to the user, unless errors are detected in the program.

Build is called automatically when clicking on the “Download to Device” or “Simulate”
buttons.

Building can be called independently by clicking on the “Build” button. This step is normal-
ly not necessary but it can be useful in order to compare the memory usage efficiency of
one script compared to another.

Simulating Scripts
Scripts can be ran directly on the PC in simulation mode. Clicking on the Simulate button
will cause the script to be built and launch a simulator in which the code is executed. This
feature is useful for writing, testing and debugging scripts. The simulator works exactly
the same way as the controller with the following exceptions.

• Execution speed is different.
• Controller configurations and operating parameters are not accessible from the

simulator
• Controller commands cannot be sent from the simulator
• The four Timers operate differently in the simulator
• RoboCAN commands and queries have no effect

In the simulator, any attempt to read a Controller configuration (example Amps limit) or a
Controller Runtime parameter (e.g. Volts, Temperature) will cause a prompt to be displayed
for the user to enter a value. Entering no value and hitting Enter, will cause the same value
that was entered last for the same parameter to be used. If this is the first time the user
is prompted for a given parameter, 0 will be entered if hitting Enter with no data.

When a function in the simulator attempts to write a configuration or a command, then
the console displays the parameter name and parameter value in the console.

Script execution in the simulator starts immediately after clicking on the Simulate button
and the console window opens.

Simulated scripts are stopped when closing the simulator console.

Editing, Building, Simulating and Executing Scripts

MicroBasic Scripting Language Manual 11

Downloading MicroBasic Scripts to the controller
The Download to Device button will cause the MicroBasic script to be built and then trans-
ferred into the controller’s flash memory where it will remain permanently unless over-
written by a new script.

The download process requires no other particular attention. There is no warning that a
script may already be present in Flash. A progress bar will appear for the duration of the
transfer which can be from a fraction of a second to a few seconds. When the download
is completed successfully, no message is displayed, and control is returned to the editor A
downloaded script cannot be read out.

An error message will appear only if the controller is not ready to receive or if an error oc-
curred during the download phase.

Downloading a new script while a script is already running will cause the running script to
stop execution. All variables will also be cleared when a new script is downloaded. When
using multiple controllers over a CAN network with the RoboCAN protocol, it is possible
to download the script into any node. Use the Download to Device button from the
Scripting tab of the PC Utility.

In networked systems using the RoboCAN protocol, scripts can be loaded in any active
node by using the Download to Remote button in the PC utility.

Saving and Loading Scripts in Hex Format
Compiled scripts can be saved as a .hex format file from the PC Utility. The bytecodes can
then be loaded into the controller using the “Update Script” button on the Console tab.
Using this technique is a good way of keeping the source code secret and/or safe while
allowing field updates.

The bytecodes in the .hex file can also be loaded in the controller by any microcomputer
using the following sequence:

Send the string:

%sld 321654987

the controller will reply with

HLD

to indicate it is waiting for data

then send the hex file, one line at a time. At the end of each line received, the controller
will send a +

Beware that if no data is received for more than 1s, the controller will exit the HLD mode.

Executing MicroBasic Scripts
Once stored in the Controller’s Flash memory, scripts can be executed either “Manually”
or automatically every time the controller is started.

MicroBasic Scripting

12 MicroBasic Scripting Language Manual V2.0, July 8, 2019

Manual launch is done by sending commands via the Serial or USB port. When connected
to the PC running the PC utility, the launch command can be entered from the Console
tab. The commands for running as stopping scripts are:

• !r : Start or Resume Script
• !r 0: Pause Script execution
• !r 1: Resume Script from pause point. All integer and Boolean variables have val-

ues they had at the time the script was paused.
• !r 2: Restarts Script from start. Set all integer variables to 0, sets all Boolean vari-

ables to False. Clears and stops the 4 timers.

On CAN networks running the RoboCAN protocol, a script on a remote node can be
launched or stopped by using the above commands with the RoboCAN prefix. For
example

• @06!r : Start or Resume Script on device at RoboCAN node 6

If the controller is connected to a microcomputer, it is best to have the microcomputer
start script execution by sending the !r command via the serial port or USB.

Scripts can be launched automatically after controller power up or after reset by setting
the Auto Script configuration to Enable in the controller configuration memory. When en-
abled, if a script is detected in Flash memory after reset, script execution will be enabled
and the script will run as when the !r command is manually entered. Once running, scripts
can be paused and resumed using the commands above.

Important Warning

Prior to set a script to run automatically at start-up, make sure that your script will
not include errors that can make the controller processor crash. Once set to auto-
matically start, a script will always start running shortly after power up. If a script
contains code that causes system crash, the controller will never reach a state
where it will be possible to communicate with it to stop the script and/or load a
new one. If this ever happens, the only possible recovery is to connect the controller
to a PC via the serial port and run a terminal emulation software. Immediately after
receiving the Firmware ID, type and send !r 0 to stop the script before it is actually
launched. Alternatively, you may reload the controller’s firmware.

Debugging Microbasic Scripts
While running a script with the source code visible in the Scripting tab, it is possible to
view the state of all variable in real time. Click on the “Inspect Variable” buttons and over
the variable in the source code. The variable value will appear near the mouse. To see
changes to the variable, move the mouse away and then back on the variable.

Using print statements in questionable parts of the code is also a very effective debug
tool. Run script from the console in order to be able to view the script output.

Script Command Priorities
When sending a Motor or Digital Output command from the script, it will be interpreted
by the controller the same way as a serial command (RS232, RS485, TCP or USB). The

MicroBasic Scripting Techniques

MicroBasic Scripting Language Manual 13

watchdog timer will trigger in if no commands are sent from the script within the watch-
dog timeout.

Script commands have the highest priority from all other interfaces.

MicroBasic Scripting Techniques
Writing scripts for the Roboteq controllers is similar to writing programs for any other
computer. Scripts can be called to run once and terminate when done. Alternatively,
scripts can be written so that they run continuously.

Single Execution Scripts
These scripts are programs that perform a number of functions and eventually terminate.
These kind of scripts can be summarized in the flow chart below. The amount of process-
ing can be simple or very complex but the script has a clear begin and end.

Processing

Start

End

FIGURE 1-1. Single execution scripts

Continuous Scripts
More often, scripts will be active permanently, reacting differently based on the status of
analog/ digital inputs, or operating parameters (Amps, Volts, Temperature, Speed, Count,
…), and continuously updating the motor power and/or digital outputs. These scripts have
a beginning but no end as they continuously loop back to the top. A typical loop construc-
tion is shown in the flow chart below.

MicroBasic Scripting

14 MicroBasic Scripting Language Manual V2.0, July 8, 2019

top

Initialization Steps

Process Events
Time, Input or

Controller events

Wait

Y

N

Start

FIGURE 1-2. Continuous execution scripts

Often, some actions must be done only once when script starts running. This could be
setting the controller in an initial configuration or computing constants that will then be
used in the script’s main execution loop.

The main element of a continuous script is the scanning of the input ports, timers, or
controller operating parameters. If specific events are detected, then the script jumps to
steps related to these events. Otherwise, no action is taken.

Prior to looping back to the top of the loop, it is highly recommended to insert a wait time.
The wait period should be only as short as it needs to be in order to avoid using process-
ing resources unnecessarily. For example, a script that monitors the battery and triggers
an output when the battery is low does not need to run every millisecond. A wait time of
100ms would be adequate and keep the controller from allocating unnecessary time to
script execution.

Optimizing Scripts for Integer Math
Scripts only use integer values as variables and for all internal calculation. This leads to
very fast execution and lower computing resource usage. However, it does also cause lim-
itation. These can easily be overcome with the following techniques.

First, if precision is needed, work with smaller units. In this simple Ohm-law example,
whereas 10V divided by 3A results in 3 Ohm, the same calculation using different units
will give a higher precision result: 10000mV divided by 3A results in 3333 mOhm

Second, the order in which terms are evaluated in an expression can make a very big
difference. For example (10 / 20) * 1000 will produce a result of 0 while (10 * 1000)/20 pro-
duces 5000. The two expressions are mathematically equivalent but not if numbers can
only be integers.

MicroBasic Language Reference

MicroBasic Scripting Language Manual 15

Script Examples
Several sample scripts are available from the download page on Roboteq’s web site.

Below is an example of a script that continuously checks the heat sink temperature at
both sides of the controller enclosure and lowers the amps limit to 50A when the average
temperature exceeds 50oC. Amps limit is set at 100A when temperature is below 50o.
Notice that as temperature is changing slowly, the loop update rate has been set at a rela-
tively slow 100ms rate.

‘ This script regularity reads the current temperature at both sides
‘ of the heat sink and changes the Amps limit for both motors to 50A
‘ when the average temperature is above 50oC. Amps limit is set to
‘ 100A when temperature is below or equal to 50oC.
‘ Since temperature changes slowly, the script is repeated every 100ms

‘ This script is distributed “AS IS”; there is no maintenance
‘ and no warranty is made pertaining to its performance or applicability

top: ‘ Label marking the beginning of the script.

‘ Read the actual command value
Temperature1 = getvalue(_TEMP,1)
Temperature2 = getvalue(_TEMP,2)
TempAvg = (Temperature1 + Temperature2) / 2

‘ If command value is higher than 500 then configure
‘ acceleration and deceleration values for channel 1 to 200

if TempAvg > 50 then
setconfig(_ALIM, 1, 500)
setconfig(_ALIM, 2, 500)

else
‘ If command value is lower than or equal to 500 then configure
‘ acceleration and deceleration values for channel 1 to 5000

setconfig(_ALIM, 1, 1000)
setconfig(_ALIM, 2, 1000)

end if

‘ Pause the script for 100ms
wait(100)
‘ Repeat the script from the start
goto top

MicroBasic Language Reference

Introduction
The Roboteq Micro Basic is high level language that is used to generate programs that
runs on Roboteq motor controllers. It uses syntax nearly like Basic syntax with some ad-
justments to speed program execution in the controller and make it easier to use.

MicroBasic Scripting

16 MicroBasic Scripting Language Manual V2.0, July 8, 2019

Comments
A comment is a piece of code that is excluded from the compilation process. A comment
begins with a single-quote character. Comments can begin anywhere on a source line,
and the end of the physical line ends the comment. The compiler ignores the characters
between the beginning of the comment and the line terminator. Consequently, comments
cannot extend across multiple lines.

‘Comment goes here till the end of the line.

Boolean
True and False are literals of the Boolean type that map to the true and false state, re-
spectively.

Numbers
Micro Basic supports only integer values ranged from -2,147,483,648 (0x80000000) to
2,147,483,647 (0x7FFFFFFF).

Numbers can be preceded with a sign (+ or -), and can be written in one of the following
formats:

• Decimal Representation

Number is represented in a set of decimal digits (0-9).

120 5622 504635

Are all valid decimal numbers.

• Hexadecimal Representation

Number is represented in a set of hexadecimal digits (0-9, A-F) preceded by 0x.

0xA1 0x4C2 0xFFFF

Are all valid hexadecimal numbers representing decimal values 161, 1218 and
65535 respectively.

• Binary Representation

Number is represented in a set of binary digits (0-1) preceded by 0b.

0b101 0b1110011 0b111001010

Are all valid binary numbers representing decimal values 5, 115 and 458 respectively.

Strings
Strings are any string of printable characters enclosed in a pair of quotation marks. Non
printing characters may be represented by simple or hexadecimal escape sequence. Micro
Basic only handles strings using the Print command. Strings cannot be stored in variable
and no string handling instructions exist.

• Simple Escape Sequence
The following escape sequences can be used to print non-visible or characters:

MicroBasic Language Reference

MicroBasic Scripting Language Manual 17

Sequence Description
\’ Single quote

\” Double quote

\\

Null

\a Alert

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

• Hexadecimal Escape Sequence
Hexadecimal escape sequence is represented in a set of hexadecimal digits (0-9,
A-F) preceded by \x in the string (such as \x10 for character with ASCII 16).

Since a hexadecimal escape sequence can have a variable number of hex digits,
the string literal “\x123” contains a single character with hex value 123. To create
a string containing the character with hex value 12 followed by the character 3, one
could write “\x00123”.

So, to represent a string with the statement “Hello World!” followed by a new line, you
may use the following syntax:

“Hello World!\n”

Blocks and Labels
A group of executable statements is called a statement block. Execution of a statement
block begins with the first statement in the block. Once a statement has been executed,
the next statement in lexical order is executed, unless a statement transfers execution
elsewhere.

A label is an identifier that identifies a particular position within the statement block that
can be used as the target of a branch statement such as GoTo, GoSub or Return.

Label declaration statements must appear at the beginning of a line. Label declaration
statements must always be followed by a colon (:) as the following:

Print_Label:
 Print(“Hello World!”)

Label name should start with alphabetical character and followed by zero or more alphanu-
meric characters or underscore. Label names cannot start with underscore. Labels names
cannot match any of Micro Basic reserved words.

MicroBasic Scripting

18 MicroBasic Scripting Language Manual V2.0, July 8, 2019

Label names are case insensitive that is PrintLabel is identical to printLabel.

The scope of a label extends whole the program. Labels cannot be declared more than
once in the program.

Variables
Micro Basic contains only two types of variable (Integer and Boolean) in addition to
arrays of these types. Boolean and arrays must be declared before use, but Integer vari-
ables may not be declared unless you use the Option Explicit compiler directive.

Option Explicit

Variables can be declared using DIM keyword (see Dim (Variable Declaration) on
page 20).

Variable name should start with alphabetical character and followed by zero or more alpha-
numeric characters or underscore. Variable names cannot start with underscore. Variable
names cannot match any of Micro Basic reserved words.

Variable names are case insensitive, that is VAR is identical to var.

The scope of a variable extends whole the program. Variables cannot be declared more
than once in the program.

Arrays
Arrays is special variables that holds a set of values of the variable type. Arrays are de-
clared using DIM command (see Dim (Variable Declaration) on page 20).

To access specific element in the array you can use the indexer [] (square brackets). Arrays
indices are zero based, so index of 5 refer to the 6th element of the array.

arr[0] = 10 ‘Set the value of the first element in the array to 10.

a = arr[5] ‘Store the 6th element of the array into variable a.

Terminology
In the following sections we will introduce Micro Basic commands and how it is used, and
here is the list of terminology used in the following sections:

• Micro Basic commands and functions will be marked in blue and cyan respectively.
• Anything enclosed in < > is mandatory and must be supplied.
• Anything enclosed in [] is optional, except for arrays where the square brackets is

used as indexers.
• Anything enclosed in { } and separated by | characters are multi choice options.
• Any items followed by an ellipsis, ... , may be repeated any number of times.

• Any punctuation and symbols, except those above, are part of the structure and
must be included.

var is any valid variable name including arrays.

arr is any valid array name.

expression is any expression returning a result.

condition is any expression returning a boolean result.

MicroBasic Language Reference

MicroBasic Scripting Language Manual 19

stmt is single Micro Basic statement.

block is zero or more Micro Basic statements.

label is any valid label name.

n is a positive integer value.

str is a valid string literal.

Keywords
A keyword is a word that has special meaning in a language construct. All keywords are
reserved by the language and may not be used as variables or label names. Below is a list
of all Micro Basic keywords:

#define And AndWhile As Boolean

Continue Dim Do Else ElseIf

End Evaluate Exit Explicit False

For GoSub GoTo If Integer

Loop Mod Next Not Option

Or Print Return Step Terminate

Then To ToBool True Until

While XOr

Operators
Micro Basic provides a large set of operators, which are symbols or keywords that specify
which operations to perform in an expression. Micro Basic predefines the usual arithmetic
and logical operators, as well as a variety of others as shown in the following table.

Category Operators

Arithmetic + - * / Mod

Logical (boolean and bitwise) And Or XOr Not True False

Increment, decrement ++ --

Shift << >>

Relational = <> < > <= >=

Assignment = += -= *= /= <<= >>=

Indexing []

Micro Basic Functions
The following is a set of Micro Basic functions

Abs Returns the absolute value of a given number.

Atan Returns the angle whose arc tangent is the specified number.

Cos Returns the cosine of the specified angle.

Sin Returns the sine of the specified angle.

Sqrt Returns the square root of a specified number.

MicroBasic Scripting

20 MicroBasic Scripting Language Manual V2.0, July 8, 2019

Controller Configuration and Commands
The following is a set of device functions for interacting with the Controller:

SetConfig Set a configuration parameter

SetCommand Send a Real Time command

GetConfig

Read an operating value

A set of similar commands are available for accessing/changing configurations, sending
commands and reading operating values of remote nodes on CAN networks using the
RoboCAN protocol.

Timers Commands
The following is a set of functions for interacting with the timers:

SetTimerCount Set number of milliseconds for timer to count.

SetTimerState Set state of a specific timer.

GetTimerCount Read timer count.

GetTimerState Read state of a specific timer.

Pre-Processor Directives (#define)
The #define creates a macro, which is the association of an identifier with a token expres-
sion. After the macro is defined, the compiler can substitute the token expression for each
occurrence of the identifier in the source file.

#define <var> <expression>

The following example illustrates how use pre-processor directive:

#define CommandID _GO + 5

Print(CommandID)

Option (Compilation Options)
Micro Basic by default treats undeclared identifiers as integer variables. If you want the
compilers checks that every variable used in the program is declared and generate com-
pilation error if a variable is not previously declared, you may use Option explicit compiler
option by pacing the following at the beginning of the program:

Option Explicit

Dim (Variable Declaration)
Micro Basic contains only two types of variable (Integer and Boolean) in addition to arrays
of these types. Boolean and arrays must be declared before use, but Integer variables
may not be declared unless you use the Option Explicit compiler directive.

Dim var As { Integer | Boolean }

MicroBasic Language Reference

MicroBasic Scripting Language Manual 21

The following example illustrates how to declare Integer variable:

Dim intVar As Integer

Arrays declaration uses a different syntax, where you should specify the array length be-
tween square brackets []. Array length should be integer value greater than 1.

Dim arr[n] As { Integer | Boolean }

The following example illustrates how to declare array of 10 integers:

Dim arr[10] As Integer

To access array elements (get/set), you may need to take a look to Arrays section (see Ar-
rays on page 18).

Variable and arrays names should follow specification stated in the Variables section (see
Variables on page 18).

If...Then Statement

• Line If

If <condition> Then <stmt> [Else <stmt>]

• Block If

If <condition> [Then]
<block>

[ElseIf <condition> [Then]
<block>]

[ElseIf <condition> [Then]
<block>]

...
 [Else

<block>]
End If

An If...Then statement is the basic conditional statement. If the expression in the If
statement is true, the statements enclosed by the If block are executed. If the expres-
sion is false, each of the ElseIf expressions is evaluated. If one of the ElseIf expres-
sions evaluates to true, the corresponding block is executed. If no expression evaluates to
true and there is an Else block, the Else block is executed. Once a block finishes execut-
ing, execution passes to the end of the If...Then statement.

The line version of the If statement has a single statement to be executed if the If ex-
pression is true and an optional statement to be executed if the expression is false. For
example:

Dim a As Integer
Dim b As Integer

a = 10
b = 20
‘ Block If statement.
If a < b Then
 a = b

MicroBasic Scripting

22 MicroBasic Scripting Language Manual V2.0, July 8, 2019

Else
 b = a
End If

‘ Line If statement
If a < b Then a = b Else b = a

Below is an example where ElseIf takes place:

If score >= 90 Then
 grade = 1
ElseIf score >= 80 Then
 grade = 2
ElseIf score >= 70 Then
 grade = 3
Else
 grade = 4
End If

For...Next Statement
Micro Basic contains two types of For...Next loops:

• Traditional For...Next:
Traditional For...Next exists for backward compatibility with Basic, but it is not rec-
ommended due to its inefficient execution.

Traditional For...Next is the same syntax as Basic For...Next statement.

• C-Style For...Next:
This is a new style of For...Next statement optimized to work with Roboteq control-
lers and it is recommended to be used. It is the same semantics as C++ for loop,
but with a different syntax.

For <var> = <expression> AndWhile <condition> [Evaluate
<stmt>]

<block>
Next

The c-style for loop is executed by initialize the loop variable, then the loop contin-
ues while the condition is true and after execution of single loop the evaluate state-
ment is executed then continues to next loop.

Dim arr[10] As Integer
For i = 0 AndWhile i < 10

arr[i] = -1
Next

The previous example illustrates how to initialize array elements to -1.

The following example illustrates how to use Evaluate to print even values from
0-10 inclusive:

For i = 0 AndWhile i <= 10 Evaluate i += 2
 Print(i, “\n”)
Next

MicroBasic Language Reference

MicroBasic Scripting Language Manual 23

While/Do Statements

• While...End While Statement

While <condition>
 <block>
End While

Example:

a = 10
While a > 0

Print(“a = “, a, “\n”)
 a--
End While
Print(“Loop ended with a = “, a, “\n”)

• Do While...Loop Statement

Do While <condition>
 <block>
Loop

The Do While...Loop statement is the same as functionality of the While...
End While statement but uses a different syntax.

a = 10
Do While a > 0

Print(“a = “, a, “\n”)
 a--
Loop
Print(“Loop ended with a = “, a, “\n”)

• Do Until...Loop Statement

Do Until <condition>
<block>

Loop

Unlike Do While...Loop statement, Do Until...Loop statement exist the
loop when the expression evaluates to true.

a = 10
Do Until a = 0

Print(“a = “, a, “\n”)
 a--
Loop
Print(“Loop ended with a = “, a, “\n”)

• Do...Loop While Statement

Do
 <block>
Loop While <condition>

Do...Loop While statement grantees that the loop block will be executed at
least once as the condition is evaluated and checked after executing the block.

MicroBasic Scripting

24 MicroBasic Scripting Language Manual V2.0, July 8, 2019

a = 10
Do

Print(“a = “, a, “\n”)
 a--
Loop While a > 0
Print(“Loop ended with a = “, a, “\n”)

• Do...Loop Until Statement

Do
<block>

Loop Until <condition>

Unlike Do...Loop While statement, Do...Loop Until statement exist the loop when
the expression evaluates to true.

a = 10
 Do

Print(“a = “, a, “\n”)
a--

 Loop Until a = 0
 Print(“Loop ended with a = “, a, “\n”)

Terminate Statement
The Terminate statement ends the execution of the program.

Terminate

Exit Statement
The following is the syntax of Exit statement:

Exit { For | While | Do }

An Exit statement transfers execution to the next statement to immediately containing
block statement of the specified kind. If the Exit statement is not contained within the
kind of block specified in the statement, a compile-time error occurs.

The following is an example of how to use Exit statement in While loop:

While a > 0
 If b = 0 Then Exit While
End While

Continue Statement
The following is the syntax of Continue statement:

Continue { For | While | Do }

A Continue statement transfers execution to the beginning of immediately containing
block statement of the specified kind. If the Continue statement is not contained within
the kind of block specified in the statement, a compile-time error occurs.

MicroBasic Language Reference

MicroBasic Scripting Language Manual 25

The following is an example of how to use Continue statement in While loop:

While a > 0
 If b = 0 Then Continue While
End While

GoTo Statement
A GoTo statement causes execution to transfer to the specified label. GoTo keyword
should be followed by the label name.

GoTo <label>

The following example illustrates how to use GoTo statement:

GoTo Target_Label
Print(“This will not be printed.\n”)
Target_Label:

Print(“This will be printed.\n”)

GoSub/Return Statements
GoSub used to call a subroutine at specific label. Program execution is transferred to the
specified label. Unlike the GoTo statement, GoSub remembers the calling point. Upon
encountering a Return statement the execution will continue the next statement after the
GoSub statement.

GoSub <label>

Return

Consider the following example:

Print(“The first line.”)
GoSub PrintLine
Print(“The second line.”)
GoSub PrintLine
Terminate

PrintLine:
 Print(“\n”)
 Return

The program will begin with executing the first print statement. Upon encountering the
GoSub statement, the execution will be transferred to the given PrintLine label. The pro-
gram prints the new line and upon encountering the Return statement the execution will
be returning back to the second print statement and so on.

MicroBasic Scripting

26 MicroBasic Scripting Language Manual V2.0, July 8, 2019

ToBool Statement
Converts the given expression into boolean value. It will be return False if expression
evaluates to zero, True otherwise.

ToBool(<expression>)

Consider the following example:

Print(ToBool(a), “\n”)

The previous example will output False if value of a equals to zero, True otherwise.

Print Statement
Output the list of expression passed.

Print({str | expression | ToBool(<expression>)}[,{str | expression
| ToBool(<expression>)}]...)

The print statement consists of the Print keyword followed by a list of expressions sepa-
rated by comma. You can use ToBool keyword to force print of expressions as Boolean.
Strings are C++ style strings with escape characters as described in the Strings section
(see Stringspage 16).

a = 3
b = 5
Print(“a = “, a, “, b = “, b, “\n”)
Print(“Is a less than b = “, ToBool(a < b), “\n”)

+ Operator
The + operator can function as either a unary or a binary operator.

+ expression
expression + expression

- Operator
The - operator can function as either a unary or a binary operator.

- expression
expression - expression

* Operator
The multiplication operator (*) computes the product of its operands.

expression * expression

/ Operator
The division operator (/) divides its first operand by its second.

expression * expression

MicroBasic Language Reference

MicroBasic Scripting Language Manual 27

Mod Operator
The modulus operator (Mod) computes the remainder after dividing its first operand by its
second.

expression Mod expression

And Operator
The (And) operator functions only as a binary operator. For numbers, it computes the
bitwise AND of its operands. For boolean operands, it computes the logical AND for its
operands; that is the result is true if and only if both operands are true.

expression And expression

Or Operator
The (Or) operator functions only as a binary operator. For numbers, it computes the bit-
wise OR of its operands. For boolean operands, it computes the logical OR for its oper-
ands; that is, the result is false if and only if both its operands are false.

expression Or expression

XOr Operator
The (XOr) operator functions only as a binary operator. For numbers, it computes the
bitwise exclusive-OR of its operands. For boolean operands, it computes the logical exclu-
sive-OR for its operands; that is, the result is true if and only if exactly one of its operands
is true.

expression XOr expression

Not Operator
The (Not) operator functions only as a unary operator. For numbers, it performs a bitwise
complement operation on its operand. For boolean operands, it negates its operand; that
is, the result is true if and only if its operand is false.

Not expression

True Literal
The True keyword is a literal of type Boolean representing the boolean value true.

False Literal
The False keyword is a literal of type Boolean representing the boolean value false.

++ Operator
The increment operator (++) increments its operand by 1. The increment operator can ap-
pear before or after its operand:

++ var
var ++

MicroBasic Scripting

28 MicroBasic Scripting Language Manual V2.0, July 8, 2019

The first form is a prefix increment operation. The result of the operation is the value of
the operand after it has been incremented.

The second form is a postfix increment operation. The result of the operation is the value
of the operand before it has been incremented.

a = 10
Print(a++, “\n”)
Print(a, “\n”)
Print(++a, “\n”)
Print(a, “\n”)

The output of previous program will be the following:

10
11
12
12

-- Operator
The decrement operator (--) decrements its operand by 1. The decrement operator can ap-
pear before or after its operand:

-- var
var --

The first form is a prefix decrement operation. The result of the operation is the value of
the operand after it has been decremented.

The second form is a postfix decrement operation. The result of the operation is the value
of the operand before it has been decremented.

a = 10
Print(a--, “\n”)
Print(a, “\n”)
Print(--a, “\n”)
Print(a, “\n”)

The output of previous program will be the following:

10
9
8
8

<< Operator
The left-shift operator (<<) shifts its first operand left by the number of bits specified by its
second operand.

expression << expression

The high-order bits of left operand are discarded and the low-order empty bits are ze-
ro-filled. Shift operations never cause overflows.

MicroBasic Language Reference

MicroBasic Scripting Language Manual 29

>> Operator
The right-shift operator (>>) shifts its first operand right by the number of bits specified by
its second operand.

expression >> expression

<> Operator
The inequality operator (<>) returns false if its operands are equal, true otherwise.

expression <> expression

< Operator
Less than relational operator (<) returns true if the first operand is less than the second,
false otherwise.

expression < expression

> Operator
Greater than relational operator (>) returns true if the first operand is greater than the sec-
ond, false otherwise.

expression > expression

<= Operator
Less than or equal relational operator (<=) returns true if the first operand is less than or
equal to the second, false otherwise.

expression <= expression

> Operator
Greater than relational operator (>) returns true if the first operand is greater than the sec-
ond, false otherwise.

expression > expression

>= Operator
Greater than or equal relational operator (>=) returns true if the first operand is greater
than or equal to the second, false otherwise.

expression >= expression

+= Operator
The addition assignment operator.

var += expression

An expression using the += assignment operator, such as

x += y

MicroBasic Scripting

30 MicroBasic Scripting Language Manual V2.0, July 8, 2019

is equivalent to

x = x + y

-= Operator
The subtraction assignment operator.

var -= expression

An expression using the -= assignment operator, such as

x -= y

is equivalent to

x = x - y

*= Operator
The multiplication assignment operator.

var *= expression

An expression using the *= assignment operator, such as

x *= y

is equivalent to

x = x * y

/= Operator
The division assignment operator.

var /= expression

An expression using the /= assignment operator, such as

x /= y

is equivalent to

x = x / y

<<= Operator
The left-shift assignment operator.

var <<= expression

An expression using the <<= assignment operator, such as

x <<= y

MicroBasic Language Reference

MicroBasic Scripting Language Manual 31

is equivalent to

x = x << y

>>= Operator
The right-shift assignment operator.

var >>= expression

An expression using the >>= assignment operator, such as

x >>= y

is equivalent to

x = x >> y

[] Operator
Square brackets ([]) are used for arrays (see Arrays on page 18).

Abs Function
Returns the absolute value of an expression.

Abs(<expression>)

Example:

a = 5
b = Abs(a – 2 * 10)

Atan Function

Returns the angle whose arc tangent is the specified number.

Number is devided by 1000 before applying atan.

The return value is multiplied by 10.

Atan(<expression>)

Example:

angle = Atan(1000) ‘450 = 45.0 degrees

Cos Function
Returns the cosine of the specified angle.

The return value is multiplied by 1000.

MicroBasic Scripting

32 MicroBasic Scripting Language Manual V2.0, July 8, 2019

Abs(<expression>)

Example:

value = Cos(0) ‘1000
[title] Sin Function
Returns the sine of the specified angle.
The return value is multiplied by 1000.
Sin(<expression>)

Example:

value = Sin(90) ‘1000
Sqrt Function
Returns the square root of a specified number.
The return value is multiplied by 1000.
Sqrt(<expression>)

Example:

value = Sqrt(2) ‘1414

GetValue
This function is used to read operating parameters from the controller at runtime. The
function requires an Operating Item, and an optional Index as parameters. The Operating
Item can be any one from the table below. The Index is used to select one of the Value
Items in multi channel configurations. When accessing a unique Operating Parameter that
is not part of an array, the index may be omitted, or an index value of 0 can be used.

Details on the various operating parameters that can be read can be found in the Control-
ler’s User Manual. (See “Serial (RS232/USB) Operation” on page 141)

GetValue(OperatingItem, [Index])

Current2 = GetValue(_BATAMPS, 2) ‘ Read Battery Amps for Motor 2

Sensor = GetValue(_ANAIN, 6) ‘ Read voltage present at Analog Input 1

Counter = GetValue(_BLCOUNTER) ‘ Read Brushless counter

SetCommand
This function is used to send operating commands to the controller at runtime. The func-
tion requires a Command Item, an optional Index and a Value as parameters. The Com-
mand Item can be any one from the table below. Details on the various commands, their
effects and acceptable ranges can be found in the Controller’s User Manual (See “Serial
(RS232/USB) Operation” on page 141).

SetCommand(CommandItem, Value)

SetCommand(_GO, 1, 500) ‘ Set Motor 1 command level at 500

SetCommand(_DSET, 2) ‘ Activate Digital Output 2

MicroBasic Language Reference

MicroBasic Scripting Language Manual 33

SetConfig / GetConfig
These two functions are used to read or/and change one of the controller’s configuration
parameters at runtime. The changes are made in the controller’s RAM and take effect im-
mediately. Configuration changes are not stored in EEPROM.

SetConfig Set a configuration parameter
GetConfig Read a configuration parameter

Both commands require a Configuration Item, and an optional Index as parameters. The
Configuration Item can be one of the valid controller configuration commands listed in the
Command Reference Section. Refer to Set/Read Configuration Commands on page 210
for syntax. Simply add the underscore character “_” to read or write this configuration
from within a script. The Index is used to select one of the Configuration Item in multi
channel configurations. When accessing a configuration parameter that is not part of an
array, index can be omitted or an index value of 0 can be used. Details on the various con-
figurations items, their effects and acceptable values can be found in the Controller’s User
Manual.

Note that most but not all configuration parameters are accessible via the SetConfig or
GetConfig function. No check is performed that the value you store is valid so this func-
tion must be handled with care.

When setting a configuration parameter, the new value of the parameter must be given in
addition to the Configuration Item and Index.

GetConfig(ConfigurationItem, [Index], value)
SetConfig(ConfigurationItem, [Index])

Accel2 = GetConfig(_MAC, 2) ‘ Read Acceleration parameter for Motor 2
PWMFreq = GetConfig(_PWMF) ‘ Read Controller’s PWM frequency
SetConfig(_MAC, 2, Accel2 * 2) ‘ Make Motor2 acceleration twice as slow

SetTimerCount/GetTimerCount
These two functions used to set/get timer count.

SetTimerCount(<index>, <milliseconds>)
GetTimerCount(<index>)

Where:

<index> : 0 - 4 for old controller models

 0 - 7 for new controller models

<milliseconds> : number of milliseconds to count

SetTimerState/GetTimerState
These two functions used to set/get timer state (started or stopped).

SetTimerState(<index>, <state>)
GetTimerState(<index>)

MicroBasic Scripting

34 MicroBasic Scripting Language Manual V2.0, July 8, 2019

Replace entire sentence with:

Where:

<index> : 0 - 4 for old controller models

 0 - 7 for new controller models

<state> : 0 - Timer Running

 1 - Timer has completed/stopped (reached 0ms)

Sending RoboCAN Commands and Configuration
Sending commands or configuration values to remote nodes on RoboCAN is done using
the functions.

SetCANCommand(<id>, <cc>, <ch>, <vv>)
SetCANConfig(<id>, <cc>, <ch>, <vv>)

Where:
 id is the remote Node Id in decimal.
 cc is the Command code, eg. _G.
 cc is the channel number. Put 1 for commands that do not normally require a channel
number.
 vv is the value.

Reading RoboCAN Operating Values Configurations
The following functions are available in Micro Basic for requesting operating values and
configurations from a remote node on RoboCAN.

FetchCANValue(<id>, <cc>, <ch>)
FetchCANConfig(<id>, <cc>, <ch>)

Where:
 id is the remote Node Id in decimal
 cc is the Command code, eg. _G
 cc is the channel number. Put 1 for commands that do not normally require a channel
number.

The following functions can be used to wait for the data to be ready for reading.

IsCANValueReady()
IsCANConfigReady()
These functions return a Boolean true/false value. They take no argument and apply to the
last issued FetchCANValue or FetchCANConfig function.

The retrieved value can then be read using the following functions.

ReadCANValue()
ReadCANConfig()
These functions return an integer value. They take no argument and apply to the last is-
sued FetchCANValue or FetchCANConfig function.

MicroBasic Language Reference

MicroBasic Scripting Language Manual 35

RoboCAN Continuous Scan
A scan of a remote RoboCAN node is initiated with the function.

ScanCANValue(<id>, <cc>, <ch>, <tt>, <bb>)

Where:
id is the remote Node Id in decimal.
cc is the Query code, eg. _V.
cc is the channel number. Put 1 for commands that do not normally require a channel
number.
tt is the scan rate in ms.
bb is the buffer location.
The scan rate can be up to 255ms. Setting a scan rate of 0 stops the automatic sending
from this node.

Unless otherwise specified, the buffer can store up to 32 values.

The arrival of a new value is checked with the function.

IsScannedCANReady(<aa>)

Where:

aa is the location in the scan buffer.
The function returns a Boolean true/false value.

The new value is then read with the function.

ReadScannedCANValue(<aa>)

Where:
 aa is the location in the scan buffer.
The function returns an integer value. If no new value was received since the previous
read, the old value will be read.

Checking the Presence of a RoboCAN Node
No error is reported in MicroBasic if an exchange is initiated with a node that does not ex-
ist. A command or configuration sent to a non-existent node will simply not be executed.
A query sent to a non existing or dead node will return the value 0. A function is therefore
provided for verifying the presence of a live node. A live node is one that sends the dis-
tinct RoboCAN heartbeat frame every 128ms. The function syntax is:

IsCANNodeAlive(<id>)

Where:
id is the remote Node Id in decimal
The function returns a Boolean true/false value.

	Cover
	Inside Cover
	Table of Contents
	Introduction
	Refer to the Datasheet for Hardware-Specific Issues
	User Manual Structure and Use
	MicroBasic Scripting

	MicroBasic Scripting
	Script Structure and Possibilities
	Source Program and Bytecodes
	Variables Types and Storage
	Variable content after Reset
	Controller Hardware Read and Write Functions
	Timers and Wait
	Execution Time Slot and Execution Speed
	Protections
	Print Command Restrictions

	Editing, Building, Simulating and Executing Scripts
	Editing Scripts
	Building Scripts
	Simulating Scripts
	Downloading MicroBasic Scripts to the controller
	Saving and Loading Scripts in Hex Format
	Executing MicroBasic Scripts
	Debugging Microbasic Scripts

	Script Command Priorities
	MicroBasic Scripting Techniques
	Single Execution Scripts
	Continuous Scripts
	Optimizing Scripts for Integer Math
	Script Examples

	MicroBasic Language Reference
	Introduction
	Comments
	Boolean
	Numbers
	Strings
	Blocks and Labels
	Variables
	Arrays
	Terminology
	Keywords
	Operators
	Micro Basic Functions
	Controller Configuration and Commands
	Timers Commands
	Pre-Processor Directives (#define)
	Option (Compilation Options)
	Dim (Variable Declaration)
	If...Then Statement
	For...Next Statement
	While/Do Statements
	Terminate Statement
	Exit Statement
	Continue Statement
	GoTo Statement
	GoSub/Return Statements
	ToBool Statement
	Print Statement
	+ Operator
	- Operator
	* Operator
	/ Operator
	Mod Operator
	And Operator
	Or Operator
	XOr Operator
	Not Operator
	True Literal
	False Literal
	++ Operator
	-- Operator
	<< Operator
	>> Operator
	<> Operator
	< Operator
	> Operator
	<= Operator
	> Operator
	>= Operator
	+= Operator
	-= Operator
	*= Operator
	/= Operator
	<<= Operator
	>>= Operator
	[] Operator
	Abs Function
	Atan Function
	Cos Function
	GetValue
	SetCommand
	SetConfig / GetConfig
	SetTimerCount/GetTimerCount
	SetTimerState/GetTimerState
	Sending RoboCAN Commands and Configuration
	Reading RoboCAN Operating Values Configurations
	RoboCAN Continuous Scan
	Checking the Presence of a RoboCAN Node

