
1

Modbus
Fieldbus
Networking

User & Reference Manual

V2.0, July 8, 2019

visit www.roboteq.com to download the latest revision of this manual

©Copyright 2016-2019 Roboteq, Inc

https://www.generationrobots.com/fr/261_roboteq

Modbus Fieldbus Networking

2	 	 V2.0, July 8, 2019

Revision History

Date Version Changes

July 8, 2019 2.0 Extracted from main User Manual

The information contained in this manual is believed to be accurate and reliable. How-
ever, it may contain errors that were not noticed at the time of publication. Users are
expected to perform their own product validation and not rely solely on data contained
in this manual.

� 3

Revision History.. 2

Introduction... 5
Refer to the Datasheet for Hardware-Specific Issues................................. 5
User Manual Structure and Use.. 5

Modbus... 7
What is Modbus... 7
Modbus object types.. 7
Protocol versions.. 8
Communication and devices... 8
Frame format.. 8
Function Codes... 10
Roboteq Implementation.. 10
Read Input Registers (0x04).. 10
Write Multiple Holding Registers (0x10)..11
Exception responses.. 12
Supported Modes... 13
Register Address Calculation.. 16
Controller Configuration.. 17
Appendix: Commands Mapping... 18

4	 	 V2.0, July 8, 2019

User Manual Structure and Use

� 5

	 Introduction

Refer to the Datasheet for Hardware-Specific Issues
This manual is the companion to your controller’s datasheet. All information that is specific
to a particular controller model is found in the datasheet. These include:

• Number and types of I/O
• Connectors pin-out
• Wiring diagrams
• Maximum voltage and operating voltage
• Thermal and environmental specifications
• Mechanical drawings and characteristics
• Available storage for scripting
• Battery or/and Motor Amps sensing
• Storage size of user variables to Flash or Battery-backed RAM

User Manual Structure and Use
The user manual discusses issues that are common to all controllers inside a given prod-
uct family. Except for a few exceptions, the information contained in the manual does not
repeat the data that is provided in the datasheets.

Introduction

6	 	 V2.0, July 8, 2019

What is Modbus

7

Modbus

This section describes the implementation and the configuration of the Modbus commu-
nication protocol. It will help you to enable Modbus on your Roboteq controller, configure
communication parameters, and ensure efficient operation.

The section contains Modbus information specific to Roboteq controllers

What is Modbus

Modbus is a serial communication protocol developed by Modicon published by Modi-
con® in 1979 for use with its programmable logic controllers (PLCs). In simple terms, it is
a method used for transmitting information over serial lines between electronic devices.
The device requesting the information is called the Modbus Master and the devices sup-
plying information are Modbus Slaves. In a standard Modbus network, there is one Mas-
ter and up to 247 Slaves, each with a unique Slave Address from 1 to 247. The Master can
also write information to the Slaves.

The official Modbus specification can be found at www.modbus.org/specs.php.

Modbus object types

The following is a table of object types provided by a Modbus slave device to a Modbus
master device:

Object type Access Size

Coil Read/Write 1 bit

Discrete Input Read Only 1 bit

Input Register Read Only 16 bits

Holding Register Read/Write 16 bits

Modbus Fieldbus Networking Manual

CANopen Interface

8	          V2.0, July 8, 2019

Protocol versions

Versions of the Modbus protocol exist for serial port and for Ethernet and other protocols
that support the Internet protocol suite. There are many variants of Modbus protocols:

• Modbus RTU: This is used in serial communication and makes use of a compact,
binary representation of the data for protocol communication. The RTU format
follows the commands/data with a cyclic redundancy check checksum as an er-
ror check mechanism to ensure the reliability of data. Modbus RTU is the most
common implementation available for Modbus. A Modbus RTU message must be
transmitted continuously without inter-character hesitations. Modbus messages
are framed (separated) by idle (silent) periods.

• Modbus ASCII: This is used in serial communication and makes use of ASCII
characters for protocol communication. The ASCII format uses a longitudinal redun-
dancy check checksum. Modbus ASCII messages are framed by leading colon («:»)
and trailing newline (CR/LF).

• Modbus TCP/IP or Modbus TCP: This is a Modbus variant used for communica-
tions over TCP/IP networks, connecting over port 502. It does not require a check-
sum calculation, as lower layers already provide checksum protection.

• Modbus over TCP/IP or Modbus over TCP or Modbus RTU/IP: This is a Modbus
variant that differs from Modbus TCP in that a checksum is included in the payload
as with Modbus RTU.

Data model and function calls are identical for the previous 4 variants of protocols; only
the encapsulation is different.

Communication and devices

Each device intended to communicate using Modbus is given a unique address. On Eth-
ernet, any device can send out a Modbus command, although usually only one master
device does so. A Modbus command contains the Modbus address of the device it is
intended for (1 to 247). Only the intended device will act on the command, even though
other devices might receive it (an exception is specific broadcast commands sent to node
0, which are acted on but not acknowledged). All Modbus commands contain checksum
information, to allow the recipient to detect transmission errors. The basic Modbus com-
mands can instruct an RTU to change the value in one of its registers, control or read an
I/O port, and command the device to send back one or more values contained in its regis-
ters.

There are many modems and gateways that support Modbus, as it is a very simple proto-
col and often copied. Some of them were specifically designed for this protocol. Different
implementations use wireline, wireless communication, such as in the ISM band, and
even Short Message Service (SMS) or General Packet Radio Service (GPRS). One of the
more common designs of wireless networks makes use of mesh networking. Typical
problems that designers have to overcome include high latency and timing issues.

Frame format

A Modbus frame is composed of an Application Data Unit (ADU), which encloses a Proto-
col Data Unit (PDU):

Modbus Fieldbus Networking Manual

What is Modbus

� 9

• ADU = Address + PDU + Error check,

• PDU = Function code + Data.

Note:

The byte order for values in Modbus data frames is big-endian (MSB, most significant byte
of a value received first).

All Modbus variants choose one of the following frame formats:

Modbus RTU frame format

Name Length (bytes) Description

Address 1 Node address

Function 1 Function code

Data n n is the number of data bytes, it depends on function

CRC 2 Cyclic redundancy check (CRC-16-IBM)

Example of frame in hexadecimal: 01 04 02 FF FF B8 80 (CRC-16-ANSI calculation from 01
to FF gives 80B8, which is transmitted least significant byte first).

Modbus ASCII frame format

Name Length (bytes) Description

Start 1 Starts with colon : (ASCII hex value is 3A)

Address 2 Node address in hex

Function 2 Function code in hex

Data n x 2 n is the number of data bytes, it depends on function

LRC 2 Checksum (Longitudinal redundancy check)

End 2 CR/LF

Address, function, data, and LRC are all capital hexadecimal readable pairs of characters
representing 8-bit values (0–255). For example, 122 (7 × 16 + 10) will be represented as 7A.

Modbus TCP frame

Name Length (bytes) Description

Transaction ID 2 For synchronization between messages of server
and client

Protocol ID 2 0 for Modbus/TCP

Length 2 Number of remaining bytes in this frame

Unit ID 1 Node address

Function 1 Function code

Data n n is the number of data bytes, it depends on func-
tion

CANopen Interface

10	          V2.0, July 8, 2019

Unit identifier is used with Modbus/TCP devices that are composites of several Modbus
devices, e.g. on Modbus/TCP to Modbus RTU gateways. In such case, the unit identifier
tells the Slave Address of the device behind the gateway. Natively Modbus/TCP-capable
devices usually ignore the Unit Identifier.

Function Codes

Modbus protocol defines several function codes for accessing Modbus registers. There
are four different data blocks defined by Modbus, and the addresses or register numbers
in each of those overlap. Therefore, a complete definition of where to find a piece of data
requires both the address (or register number) and function code (or register type).

The function codes most commonly recognized by Modbus devices are indicated in the
table below. This is only a subset of the codes available - several of the codes have special
applications that most often do not apply.

Function Code Register Type

1 Read Coil

2 Read Discrete Input

3 Read Holding Registers

4 Read Input Registers

5 Write Single Coil

6 Write Single Holding Register

15 Write Multiple Coils

16 Write Multiple Holding Registers

Roboteq Implementation

Roboteq’s implementation of Modbus doesn’t contain all supported functions and modes
but contains only subset of it. In this section we are introducing the supported modes and
functions implemented in Roboteq’s micro controllers.

Roboteq products support only two functions:

Read Input Registers (0x04)

This function is implemented to read exactly 4 bytes (2 registers). Issuing any messages
to read other than 2 registers will return no response.

For example to read VAR1, you need to read 2 registers from address 0x20C1 so you
need to send the following RTU message:

01 04 20 C1 00 02 2B F7

Modbus Fieldbus Networking Manual

Roboteq Implementation

� 11

Name Description

01 Node address

04 Function code (Read Input Registers)

20 C1 Register address for reading VAR1

00 02 Length of registers to be read (must be 2)

2B F7 Cyclic redundancy check (CRC-16-IBM)

The response for this message will be as following:

01 04 04 00 00 12 34 F6 F3

Name Description

01 Node address

04 Function code (Read Input Registers)

04 Total bytes read (always 4 bytes)

00 00 12 34 Value in big Indian notation (MSB first).

F6 F3 Cyclic redundancy check (CRC-16-IBM)

Write Multiple Holding Registers (0x10)

This function is implemented to write exactly 4 bytes (2 registers). Issuing any messag-
es to write other than 2 registers will have no effect.

For example to write 0x00001234 to VAR1, you need to write 2 registers to address
0x00A1 so you need to send the following RTU message:

01 10 00 A1 00 02 04 00 00 12 34 35 6C

Name Description

01 Node address

10 Function code (Write Multiple Holding Registers)

00 A1 Register address for writing VAR1

00 02 Number of registers to write (must be 2)

04 Number of bytes to be written (must be 4)

00 00 12 34 Value to be written in big Indian notation (MSB first)

35 6C Cyclic redundancy check (CRC-16-IBM)

The response for this message will be as following:

01 10 00 A1 00 02 10 2A

CANopen Interface

12	          V2.0, July 8, 2019

Name Description

01 Node address

10 Function code (Write Multiple Holding Registers)

00 A1 Address of written register (VAR1).

00 02 Number of registers written.

10 2A Cyclic redundancy check (CRC-16-IBM)

Exception responses

Following a request, there are 4 possible outcomes from the slave:

• The request is successfully processed by the slave and a valid response is sent.

• The request is not received by the slave therefore no response is sent.

• The request is received by the slave with a parity, CRC or LRC error (The slave ig-
nores the request and sends no response).

• The request is received without an error, but cannot be processed by the slave for
another reason. The slave replies with an exception response.

Here is an example of an exception response:

0A 81 02 B053

0A 81 02 B053

Name Description

0A Node address

81 Function code with the highest bit set.

02 The exception code.

B0 53 Cyclic redundancy check (CRC-16-IBM)

The exception codes as explained in the Modbus specification are:

Code Name Meaning

0x01 Illegal
Function

The function code received in the query is not an allowable action for the
slave. This may be because the function code is only applicable to newer
devices, and was not implemented in the unit selected. It could also indi-
cate that the slave is in the wrong state to process a request of this type,
for example because it is unconfigured and is being asked to return reg-
ister values. If a Poll Program Complete command was issued, this code
indicates that no program function preceded it.

0x02 Illegal Data Address The data address received in the query is not an allowable address for the
slave. More specifically, the combination of reference number and transfer
length is invalid. For a controller with 100 registers, a request with offset
96 and length 4 would succeed, a request with offset 96 and length 5 will
generate exception 02.

Modbus Fieldbus Networking Manual

Roboteq Implementation

� 13

Code Name Meaning

0x03 Illegal Data Value A value contained in the query data field is not an allowable value for the
slave. This indicates a fault in the structure of remainder of a complex
request, such as that the implied length is incorrect. It specifically does
NOT mean that a data item submitted for storage in a register has a value
outside the expectation of the application program, since the MODBUS
protocol is unaware of the significance of any particular value of any partic-
ular register.

0x04 Slave Device Failure An unrecoverable error occurred while the slave was attempting to per-
form the requested action.

0x05 Acknowledge Specialized use in conjunction with programming commands.
The slave has accepted the request and is processing it, but a long dura-
tion of time will be required to do so. This response is returned to prevent
a timeout error from occurring in the master. The master can next issue a
Poll Program Complete message to determine if processing is completed.

0x06 Slave Device Busy Specialized use in conjunction with programming commands.
The slave is engaged in processing a long-duration program command.
The master should retransmit the message later when the slave is free..

0x07 Negative Acknowl-
edge

The slave cannot perform the program function received in the query. This
code is returned for an unsuccessful programming request using function
code 13 or 14 decimal. The master should request diagnostic or error infor-
mation from the slave.

0x08 Memory Parity Error Specialized use in conjunction with function codes 20 and 21 and refer-
ence type 6, to indicate that the extended file area failed to pass a consis-
tency check.
The slave attempted to read extended memory or record file, but detected
a parity error in memory. The master can retry the request, but service
may be required on the slave device.

0x0A Gateway Path Un-
available

Specialized use in conjunction with gateways, indicates that the gateway
was unable to allocate an internal communication path from the input port
to the output port for processing the request. Usually means the gateway
is misconfigured or overloaded.

0x0B Gateway Target
Device Failed to Re-
spond

Specialized use in conjunction with gateways, indicates that no response
was obtained from the target device. Usually means that the device is not
present on the network.

Supported Modes

Roboteq porducts are supporting the following modes:

Modbus RTU over TCP (2)

Simply put, this is a Modbus RTU message transmitted with a TCP/IP wrapper and sent
over a network instead of serial lines.

For examples, to read VAR1, you need to read 2 registers from address 0x20C1 so you
need to send the following RTU message:

01 04 20 C1 00 02 2B F7

CANopen Interface

14	          V2.0, July 8, 2019

Name Description

01 Node address

04 Function code (Read Input Registers)

20 C1 Register address for reading VAR1

00 02 Length of registers to be read (must be 2)

2B F7 Cyclic redundancy check (CRC-16-IBM)

The response for this message will be as following:

01 04 04 00 00 12 34 F6 F3

Name Description

01 Node address

04 Function code (Read Input Registers)

04 Total bytes read (always 4 bytes)

00 00 12 34 Value in big Indian notation (MSB first).

F6 F3 Cyclic redundancy check (CRC-16-IBM)

Modbus TCP (1)

Modbus TCP message is the same as RTU over TCP message by removing CRC and
adding MBAP header (Modbus Application Header) is being added to the start of the mes-
sage. Also, node address moved from into MBAP header and named Unit ID.

The MBAP header is consisting from the following:

Name Description

Transaction ID 2 bytes set by the Client to uniquely identify each request. These
bytes are echoed by the Server since its responses may not be
received in the same order as the requests.

Protocol Identifier 2 bytes set by the Client, must be 0x0000.

Length 2 bytes identifying the number of bytes in the message to follow.

Unit Identifier Node address.

For examples, to read VAR1, you need to read 2 registers from address 0x20C1 so you
need to send the following TCP message:

00 03 00 00 00 06 01 04 20 C1 00 02

Modbus Fieldbus Networking Manual

Roboteq Implementation

� 15

Name Description

00 03 Transaction ID.

00 00 Protocol Identifier (0x0000 for TCP).

00 06 Number of bytes in the record.

01 Node address

04 Function code (Read Input Registers)

20 C1 Register address for reading VAR1

00 02 Length of registers to be read (must be 2)

The response for this message will be as following:

00 03 00 00 00 0D 01 04 04 00 00 12 34

Name Description

00 03 Transaction ID.

00 00 Protocol Identifier (0x0000 for TCP).

00 0D Number of bytes in the record (13 bytes).

01 Node address

04 Function code (Read Input Registers)

04 Total bytes read (always 4 bytes)

00 00 12 34 Value in big Indian notation (MSB first).

Modbus RS232/RS485 ASCII

Modbus ASCII marks the start of each message with a colon character “:” (hex 3A). The
end of each message is terminated with the carriage return and line feed characters (hex
0D and 0A).

In Modbus ASCII, each data byte is split into the two bytes representing the two ASCII
characters in the Hexadecimal value.

Modbus ASCII is terminated with an error checking byte called an LRC or Longitudinal Re-
dundancy Check (See appendix B).

For examples, to read VAR1, you need to read 2 registers from address 0x20C1 so you
need to send the following ASCII message:

:010420C1000218<CRLF>

CANopen Interface

16	          V2.0, July 8, 2019

Name Description

‘:’ Start of message - 0x3A

‘0’ ‘1’ Node address – 0x01

‘0’ ‘4’ Function code (Read Input Registers) – 0x04

‘2’ ‘0’ ‘C’ ‘1’ Register address for reading VAR1 – 0x20C1

‘0’ ‘0’ ‘0’ ‘2’ Length of registers to be read (must be 2) – 0x0002

‘1’ ‘8’ LRC

<CRLF> End of message, carriage return and line feed – 0x0D0A

The response for this message will be as following:

:01040400001234B1<CRLF>

Name Description

‘:’ Start of message - 0x3A

‘0’ ‘1’ Node address – 0x01

‘0’ ‘4’ Function code (Read Input Registers) – 0x04

‘0’ ‘4’ Read data length (4 bytes) – 0x04

‘0’ ‘0’ ‘0’ ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ Value read from VAR1 – 0x00001234

‘B’ ‘1’ LRC

<CRLF> End of message, carriage return and line feed – 0x0D0A

Register Address Calculation

Register address is calculated based on CANOpen ID of the command/query. You can use
the following steps to get the register address.

• From Roboteq product’s respective manual find your command/query.

• Get the CANOpenID value.

• Left shift the CANOpenID with 5 bits.

• OR the result with the command/query index.

• AND the result with 0xFFFF.

• The resulting value will be the register address.

For example, the read user integer variable CANOpen ID is 0x2106 and suppose we are
required to read the first variable:

• CANOpenID = 0x2106

• Left shift with 5  0x2106 << 5 = 0x420C0

• OR with index  0x420C0 | 0x01 = 0x420C1

• AND the result with 0xFFFF 	 0x420C1 & 0xFFFF = 0x20C1

• Use 0x20C1 as the address.

Modbus Fieldbus Networking Manual

Roboteq Implementation

� 17

You can also calculate the register address from the tables in the appendix A, you need to
get the Modbus ID value from the table then add to it the desired command/query index.

For example, the read user integer variable Modbus ID is 0x20C0, to get the first variable:

• ModbusID = 0x20C0.

• Add the index  0x20C0 + 0x01 = 0x20C1

• Use 0x20C1 as the address.

Controller Configuration

To configure controller to use Modbus, you will find new configuration section called
Modbus under control board:

From the configuration you could set Modbus mode to (Off, TCP, RTU over TCP, RS232
ASCII, or RS485 ASCII). You will be also able to set the Modbus Slave ID as long as the
desired data alignment.

CANopen Interface

18	          V2.0, July 8, 2019

Appendix: Commands Mapping

Command Mapping

Command CANOpen ID Modbus ID (Hex) Modbus ID (Dec)

CG 0x2000 0x0000 0

P 0x2001 0x0020 32

S 0x2002 0x0040 64

C 0x2003 0x0060 96

CB 0x2004 0x0080 128

VAR 0x2005 0x00A0 160

AC 0x2006 0x00C0 192

DC 0x2007 0x00E0 224

DS 0x2008 0x0100 256

D1 0x2009 0x0120 288

D0 0x200A 0x0140 320

H 0x200B 0x0160 352

EX 0x200C 0x0180 384

MG 0x200D 0x01A0 416

MS 0x200E 0x01C0 448

PR 0x200F 0x01E0 480

PX 0x2010 0x0200 512

PRX 0x2011 0x0220 544

AX 0x2012 0x0240 576

DX 0x2013 0x0260 608

SX 0x2014 0x0280 640

B 0x2015 0x02A0 672

RC 0x2016 0x02C0 704

EES 0x2017 0x02E0 736

R 0x2018 0x0300 768

AO 0x2019 0x0320 800

TX 0x201A 0x0340 832

TV 0x201B 0x0360 864

CSW 0x201C 0x0380 896

PSW 0x201D 0x03A0 928

ASW 0x201E 0x03C0 960

CSS 0x201F 0x03E0 992

Modbus Fieldbus Networking Manual

Roboteq Implementation

� 19

Query Mapping

Query CANOpen ID Modbus ID (Hex) Modbus ID (Dec)

A 0x2100 0x2000 8192

M 0x2101 0x2020 8224

P 0x2102 0x2040 8256

S 0x2103 0x2060 8288

C 0x2104 0x2080 8320

CB 0x2105 0x20A0 8352

VAR 0x2106 0x20C0 8384

SR 0x2107 0x20E0 8416

CR 0x2108 0x2100 8448

BCR 0x2109 0x2120 8480

BS 0x210A 0x2140 8512

BSR 0x210B 0x2160 8544

BA 0x210C 0x2180 8576

V 0x210D 0x21A0 8608

D 0x210E 0x21C0 8640

T 0x210F 0x21E0 8672

F 0x2110 0x2200 8704

FS 0x2111 0x2220 8736

FF 0x2112 0x2240 8768

B 0x2115 0x22A0 8864

DO 0x2113 0x2260 8800

E 0x2114 0x2280 8832

CIS 0x2116 0x22C0 8896

CIA 0x2117 0x22E0 8928

CIP 0x2118 0x2300 8960

TM 0x2119 0x2320 8992

K 0x211A 0x2340 9024

DR 0x211B 0x2360 9056

MA 0x211C 0x2380 9088

MGD 0x211D 0x23A0 9120

MGT 0x211E 0x23C0 9152

MGM 0x211F 0x23E0 9184

MGS 0x2120 0x2400 9216

MGY 0x2121 0x2420 9248

FM 0x2122 0x2440 9280

HS 0x2123 0x2460 9312

LK 0x2124 0x2480 9344

CANopen Interface

20	          V2.0, July 8, 2019

Query CANOpen ID Modbus ID (Hex) Modbus ID (Dec)

TR 0x2125 0x24A0 9376

QO 0x2126 0x24C0 9408

EO 0x2127 0x24E0 9440

RMA 0x2128 0x2500 9472

RMG 0x2129 0x2520 9504

RMM 0x212A 0x2540 9536

ML 0x212B 0x2560 9568

TS 0x212C 0x2580 9600

MRS 0x212D 0x25A0 9632

MZ 0x212E 0x25C0 9664

PK 0x212F 0x25E0 9696

RF 0x2130 0x2600 9728

GY 0x2131 0x2620 9760

ANG 0x2132 0x2640 9792

SCC 0x2133 0x2660 9824

ICL 0x2134 0x2680 9856

FC 0x2135 0x26A0 9888

SL 0x2136 0x26C0 9920

FIN 0x2137 0x26E0 9952

MGX 0x2138 0x2700 9984

BSC 0x213A 0x2740 10048

SS 0x213C 0x2780 10112

SSR 0x213D 0x27A0 10144

CSS 0x213E 0x27C0 10176

CSR 0x213F 0x27E0 10201

BMC 0x2141 0x2820 10272

BMF 0x2142 0x2840 10304

BMS 0x2143 0x2860 10336

DI 0x2145 0x28A0 10400

AI 0x2146 0x28C0 10432

AIC 0x2147 0x28E0 10464

PI 0x2148 0x2900 10496

PIC 0x2149 0x2920 10528

Modbus Fieldbus Networking Manual

	Cover
	Inside Cover
	Table of Contents
	Introduction
	Refer to the Datasheet for Hardware-Specific Issues
	User Manual Structure and Use

	Modbus
	What is Modbus
	Modbus object types
	Protocol versions
	Communication and devices
	Frame format
	Function Codes

	Roboteq Implementation
	Read Input Registers (0x04)
	Write Multiple Holding Registers (0x10)
	Exception responses
	Supported Modes
	Register Address Calculation
	Controller Configuration

	Appendix: Commands Mapping

